RECALL - PICTOGRAMS

Alice asks children in her class what their favourite fruit is. She creates this pictogram to record her results.

Fruit	Favourite fruit					
Apple						
Pear						
Banana						
Orange						
Plum						
Strawberry						

KEY: each fruit represents 2 piece of fruit.

1. Write the total next to each fruit.
2. Which fruit is the most popular?
3. Which fruit is the least popular?
4. Which two fruits are liked equally?
5. How many people liked strawberries?
6. How many more people liked plums than strawberries?
7. How many more people liked strawberries than oranges?

RECALL - PICTOGRAMS

Alice asks children in her class what their favourite fruit is. She creates this pictogram to record her results.

Fruit	Favourite fruit					
Apple 3						
Pear 9						
Banana 6						
Orange 9						
Plum 12						
Strawberry						
10						

KEY: each fruit represents 2 piece of fruit.

1. Write the total next to each fruit.
2. Which fruit is the most popular? plum
3. Which fruit is the least popular? apples
4. Which two fruits are liked equally? Pears and oranges
5. How many people liked strawberries? 10
6. How many more people liked plums than strawberries? 2 more
7. How many more people liked strawberries than oranges? 1 more

LEARNING HABITS?

MODELLED / GUIDED EXAMPLE

Louise makes a pictogram to record how many coloured Smarties she has.

Colour	Pictógram	Total
Green		
Orange		40
Blue		25
Pink		
Yellow		55
Red		40
Purple		20
Brown		

KEY: Each Smartie represents 10 of that colour.

Working out data

1) Complete the total column of the table for green, pink and brown.
2) Which coloured Smartie has the most?
3) Which coloured Smartie has the least?
4) Which two coloured Smarties there equal amounts of?
5) How many more pink Smarties are there than purple?
6) How many more orange Smarties are there than green?
7) If Louise finds 5 more yellow Smarties, what will her total be?
8) She finds 10 more purple smarties. Draw this on the pictogram.

GUIDED EXAMPLE
Louise makes a pictogram to record how many coloured Smarties she has.

colour	tog	Total
	00	35
Oune	-000	40
bie	01	25
pax	-00	30
velax	0	55
${ }_{\text {Red }}$	0000	40
anpe	-0	30
800m	01	15

KEY: Each Smartie represents 10 of that colour.

Working out data

1) Complete the total column of the table for green, pink and brown.
2) Which coloured Smartie has the most? yellow
3) Which coloured Smartie has the least? brown
4) Which two coloured Smarties are there equal amounts of? Orange and red
5) How many more pink Smarties are there than purple? 10 more
6) How many more orange Smarties are there than green? 5 more
7) If Louise finds 5 more yellow Smarties, what will her total be? 60
8) She finds 10 more purple smarties. Draw this on the pictogram. 30

INTELLIGENT PRACTICE

A pictogram to show mini-beasts discovered in the garden.

Mini-beasts	Mini-beasts discovered				
Ladybird	-3	4)	?6		
Bumblebee	O)	\%)			
Caterpillar	- ${ }^{\text {b }}$	- ${ }^{\text {ob }}$	ab	-	- \%
Grasshopper	\%	氐			
Butterfly	?:	?\%			
Snail	90	9	80	90	
Worm	0				

Key-each picture represents 10.

1. Write the total next to each row.
2. Which mini-beast is the most common?
3. Which mini-beast is the least common?
4. Which three mini-beasts were there equal numbers of?
5. How many ladybirds?
6. How many bumblebees?
7. How many more ladybirds to bumblebees?
8. How many more snails to butterflies?
9. How many fewer worms to grasshoppers?
10. How many fewer bumblebees to caterpillars?
11. How many mini-beasts were found altogether?

INTELLIGENT PRACTICE

A pictogram to show mini-beasts discovered in the garden.

Mini-beasts	Mini-beasts discovered				
Ladybird 30	00	.@	2\%		
Bumblebee 20	0	?			
Caterpillar 50		- 6			\cdots
Grasshopper 20	$\%$				
Butterfly 20	Q:8	:?			
Snail 40	980		90	90	
Worm 10					

1. Write the total next to each row.
2. Which mini-beast is the most common? Caterpillar
3. Which mini-beast is the least common? Worm
4. Which three mini-beasts were there equal numbers of? Bumblebee, grasshopper, butterfly
5. How many ladybirds? 30
6. How many bumblebees? 20
7. How many more ladybirds to bumblebees? 10 more
8. How many more snails to butterflies? 20 more
9. How many fewer worms to grasshoppers? 10 fewer
10. How many fewer bumblebees to caterpillars? 30 fewer
11. How many mini-beasts were found altogether? 190

DIVE DEEPER

1 A bakery made a pictogram to show how many cakes they sold on each day of the week.

$$
\text { KEY - each represents } 10
$$

Write the totals in the last column of the table.

Which day sold the most cakes?

What day sold the least cakes?

Which two days sold the same amount of cakes? \qquad and \qquad
How many more cakes were sold on Wednesday than Thursday? \square

This pictogram shows results from a travel survey, It shows how people travel to school.

Finish drawing the pictogram in the last column.
More people travel by \qquad or than by walking.

Fewer people travel by \qquad or than by cycling.

Create your own pictogram with a key.

DIVE DEEPER

1 A bakery made a pictogram to show how many cakes they sold on each day of the week.

Day	Cakes sold	Total
Monday		50
Tuesday		25
Wednesday		40
Thursday		35
Friday		60
Saturday	25	
Sunday		10

KEY - each - represents 10
Write the totals in the last column of the table.

Which day sold the most cakes?
Friday
What day sold the least cakes?
Sunday
Which two days sold the same amount of cakes? Tuesday and Saturday.

How many more cakes were sold on Wednesday than Thursday?

DIVE DEEPER 2

Jack and Whitney have carried out a traffic survey.

\ln	000
00000	
0	0000
\ln	000
\ln	00000

Is he right? Convince me. Whitney says;

To find the total number of vehicles I need to count the symbols. There are 16 and a half vehicles.

Is she correct? Explain your answer.

> Can you draw the new pictogram to show 10 more cars and 5 more lorries. How would this change the data? Explain what you know.

DIVE DEEPER 2 - ANSWERS

Jack and Whitney have carried out a traffic survey.

(8) $=$
$=10$ vehicles

> If I add the number of lorries and bikes together then it will be equal to the number of cars

Is he right? Convince me.
Whitney says;
To find the total number of vehicles I need to count the symbols. There are 16 and a half vehicles.

Jack is correct because there are 20 lorries and 30 bikes. That means
there are 50
lorries and bikes altogether. This is the same as the number of cars.

Whitney is

incorrect because
she has ignored the key.
That means there will be 165 cars, not 16 and a half.

Is she correct? Explain your answer.

Can you draw the new pictogram to show 10 more cars and 5 more lorries.
How would this change the data?
Explain what you know.
10 more cars would make 60 cars. Draw one whole wheel.
5 more lorries would make 25 lorries. Draw half a wheel.
There would now be more cars than lorries and bikes.

