RECALL

Solve these divisions and write your remainders as a decimal

$23 \div 2=$	
$13 \div 3=$	
$57 \div 6=$	
$65 \div 8=$	
$79 \div 9=$	$123 \div 12=$ $133 \div 13=$ $597 \div 16=$ $867 \div 18=$ $729 \div 19=$

LEARNING HABITS?

GUIDED PRACTICE

1) What decimal
number is the arrow pointing to?
2) Label all the decimals on the number line.

Can you write a set of rules about how you did this?

INTELLIGENT PRACTICE

$\frac{1}{5}=$
$\frac{2}{5}=$
$\frac{3}{5}=$
$\frac{4}{5}=$

What do you notice about the difference between the decimals? Why?

$$
\begin{aligned}
& \frac{1}{3}= \\
& \frac{1}{6}= \\
& \frac{1}{9}= \\
& \frac{1}{12}= \\
& \text { All these fractions are } \\
& \text { examples of recurring } \\
& \text { fractions, what do you } \\
& \text { think this means? }
\end{aligned}
$$

$\frac{3}{9}=$	$\frac{4}{9}=$	$\frac{5}{9}=$	$\frac{8}{9}=$
$\frac{5}{8}=$	$\frac{3}{7}=$	$\frac{7}{12}=$	$\frac{5}{6}=$

DIVE DEEPER 1

1) Fractions can be expressed as divisions. For example, $\frac{1}{2}=1 \div 2$ Write these fractions as divisions.
a) $\frac{1}{3}=$ \qquad b) $\frac{2}{3}=$ \qquad -
c) $\frac{4}{7}=\ldots \div$
d) $-=3 \div 5$
e) ${ }_{7}=3 \div$
f) $\frac{1}{10}=$ \qquad
2) Write an equivalent fraction and a decimal for each of the fractions marked on the number line.

DIVE DEEPER 1 ANSWERS

1) Fractions can be expressed as divisions. For example, $\frac{1}{2}=1 \div 2$ Write these fractions as divisions.
a) $\frac{1}{3}=1 \div 3$
b) $\frac{2}{3}=2 \div 3$
c) $\frac{4}{7}=4 \div 7$
d) $\frac{3}{5}=3 \div 5$
e) $\frac{3}{7}=3 \div 7$
f) $\frac{1}{10}=1 \div 10$
2) Write an equivalent fraction and a decimal for each of the fractions marked on the number line.

DIVE DEEPER 2

3) Write each of these calculations as a fraction and a decimal.
$3 \div 2$
$11 \div 8$
$5 \div 6$
$2 \div 3$
4) Jack says that, ' I converted $\frac{1}{2}$ to a decimal and got the answer 2.'

Jack is incorrect.
Explain the mistake that Jack has made.
5) Dora: To find $\frac{19}{20}$ as a decimal, I found $\frac{1}{20}$ as a decimal, then took it ways from 1.

Use Dora's method to find the decimal equivalent for $\frac{49}{50}$
6) Filip is thinking of a fractions.

When he converts it to a decimal, it is smaller than 0.5 but greater than 0.4.
What fraction could Filip be thinking of?
How many possibilities can you find?

DIVE DEEPER 2 ANSWERS

3) Write each of these calculations as a fraction and a decimal.
$3 \div 2=\frac{3}{2}=1.5 \quad 11 \div 8=\frac{11}{8}=1.375 \quad 5 \div 6=\frac{5}{6}=0.833 \quad 2 \div 3=\frac{2}{3}=0.66$
4) Jack says that, ' I converted $\frac{1}{2}$ to a decimal and got the answer 2.'

Jack is incorrect.
Jack is incorrect because he divided 2 by 1 not 1 by 2 .
5) Dora: To find $\frac{19}{20}$ as a decimal, I found $\frac{1}{20}$ as a decimal, then took it ways from 1.

Use Dora's method to find the decimal equivalent for $\frac{49}{50}$
$\frac{1}{50}=0.02 \quad 1-0.02=0.98 \quad \frac{49}{20}=0.98$
6) Filip is thinking of a fraction.

When he converts it to a decimal, it is smaller than 0.5 but greater than 0.4.
What fraction could Filip be thinking of? $\frac{2}{5}>\frac{1}{2}$
How many possibilities can you find?

SELF-ASSESSMENT

- Some will even be able to reason about the magnitude of fractions and decimals equivalence
- Some will be able to spot patterns within decimal and fraction equivalences
- Most will be able to use division to covert fractions to decimals
- All will be able to recall decimal equivalence for $\frac{1}{2}, \frac{1}{4}, \frac{1}{5}$ and $\frac{1}{10}$

