RECALL

I have a dial.

I spin the dial twice.

The arrow points to 2 the first time and then 3 the second time.

I make the number 23.

Н	Т	0
-	9	9
	2	3
	7	6

Make a 2 digit number from the dial and subtract it from 99 using column subtraction.

- Neatly write the calculation.
- Ensure your digits are in the correct column.
- Solve the calculation.

Remember to start subtraction in the unit column.

Write a calculation for above but solve it mentally (without a written method). How did you solve it?

LO: I CAN SUBTRACT TWO 3.DIGIT

Thursday 8th July 2021

Some will even solve abstract problems.

Some will identify errors made in calculations / solve word problems.

Most will subtract two 3 digit numbers using column subtraction (no exchange).

All will subtract 1 or 2 digit numbers with adult support.

GUIDED PRACTICE

The children spin the dial three times and the pointer lands on 3, 5 and 2.

It makes 352.

They write is as a subtraction

999 - 352 =

Luis solves it by using a place value board. Isla solves it using column subtraction.

Isla subtracts a column at a time. She starts with the <u>ones</u>, then the <u>tens</u> and then the <u>hundreds</u>.

	Н	Т	0
-	9	9	9
	3	5	2
			7

	Н	Т	0
-	9	9	9
	3	5	2
		4	7

	Н	Т	0
-	9	9	9
	3	5	2
	6	4	7

INTELLIGENT PRACTICE

3 dig	it - 3 dig	<u>iit</u>		
	Н	Т	0	
-	4	5	8	
	3	3	4	
	Н	T	0	
-	8	9	6	
	3	4	6	
				1
	Н	Т	0	
-	7	6	5	
	3	1	4	

Write a column subtraction to make 456. How many different ways can you make it? Here is one example.

-	5	6	7
	1	1	1
	4	5	6

DIVE DEEPER 1

Jamilla's arrows point to 4, 3 and 5 to make the number 435.

She puts makes 999 on her mat. Then she takes away 435. Cross off 435.

Jamilla then checks her answer using column subtraction. Complete it.

Н	Т	0
- 9	9	9
4	3	5

If you take away 200 more, what is the total now? ____

3	Henry had 678 sweets but his little sister ate 234. Complete the column
	Complete the column
	Subtraction.

Н	Т	0

4	Ron is working out 785 - 257					Г
	Do you agree with the way Ron has set out the subtraction? Why?		Н	T	0	L
	ser out the subtraction? why?		2	5	7	
		_	7	8	5	

5 A TV costs £120 less than this computer. How much does the TV cost? Prove it.

There are 849 people at a concert.
There are 625 adults at the concert.

How many children are at the concert?

How many more adults than children are at the concert?

Prove your answers.

DIVE DEEPER 2

James tried to subtract 143 from 454. He made a mistake. Explain what he did wrong in your maths book.

	Н	Т	0
-	4	5	4
	1	4	3
	3	2	1

Each of these symbols is used instead of a digit.

$$-\frac{\overset{\mathsf{H}}{\overset{\mathsf{T}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}{\overset{O}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}$$

I know the value of the triangle is ____ as ___ take away 2 leaves 4.

I know the value of the square is _____ as 4 take away ____ leaves 1.

I know the value of the star is _____ as ____ take away 2 leaves _____, which is the same value as the triangle.

4 | Complete the part-whole models.

How did you solve b? Write an explanation in your maths book.